Wednesday, March 30, 2016

MAKALAH KALOR



  BAB 1
PENDAHULUAN
1.      LATAR BELAKANG
Perpindahan kalor dari suatu zat ke zat lain seringkali terjadi dalam industri proses. Pada kebanyakan pengerjaan, diperlukan pemasukan atau pengeluaran kalor, untuk mencapai dan mempertahankan keadaan yang dibutuhkan sewaktu proses berlangsung. Kondisi pertama yaitu mencapai keadaan yang dibutuhkan untuk pengerjaan, terjadi umpamanya bila pengerjaan harus berlangsung pada suhu tertentu dan suhu ini harus dicapai dengan jalan pemasukan atau pengeluaran kalor. Kondisi kedua yaitu mempertahankan keadaan yang dibutuhkan untuk operasi proses, terdapat pada pengerjaan eksoterm dan endoterm. Disamping perubahan secara kimia, keadaan ini dapat juga merupakan pengerjaan secara alami. Dengan demikian, Pada pengembunan dan penghabluran (kristalisasi) kalor harus dikeluarkan. Pada penguapan dan pada umumnya juga pada pelarutan, kalor harus dimasukkan. Hukum alam menyatakan bahwa kalor adalah suatu bentuk energi.
Bila dalam suatu sistem terdapat gradien suhu, atau bila dua sistem yang suhunya berbeda disinggungkan,maka akan terjadi perpindahan energi. Proses ini disebut sebagai perpindahan panas (Heat Transfer). Dari titik pandang teknik (engineering), Analisa perpindahan panas dapat digunakan untuk menaksir biaya, kelayakan, dan besarnya peralatan yang diperlukan untuk memindahkan sejumlah panas tertentu dalam waktu yang ditentukan. Ukuran ketel, pemanas, mesin pendingin, dan penukar panas tergantung tidak hanya pada jumlah panas yang harus dipindahkan, tetapi terlebih-lebih pada laju perpindahan panas pada kondisi-kondisi yang ditentukan. Beroperasinya dengan baik komponen-komponen peralatan, seperti misalnya sudu-sudu turbin atau dinding ruang bakar, tergantung pada kemungkinan pendinginan logam-logam tertentu dengan membuang panas secara terus menerus pada laju yang tinggi dari suatu permukaan. Juga pada rancang-bangun (design) mesin-mesin listrik, transformator dan bantalan, harus diadakan analisa perpindahan panas untuk menghindari konduksi-konduksi yang akan menyebabkan pemanasan yang berlebihan dan merusakan peralatan. Berbagai contoh ini menunjukkan bahwa dalam hampir tiap cabang keteknikan dijumpai masalah perpindahan panas yang tidak dapat dipecahkan dengan penalaran termodinamika saja, tetapi memerlukan analisa yang didasarkan pada ilmu perpindahan panas.
Dalam perpindahan panas, sebagaimana dalam cabang-cabang keteknikan lainnya, penyelesaian yang baik terhadap suatu soal memerlukan asumsi (pengandaian) dan idealisasi. Hampir tidak mungkin menguraikan gejala fisik secara tepat, dan untuk merumuskan suatu soal dalam bentuk persamaan yang dapat diselesaikan kita perlu mengadakan beberapa pengira-iraan (approximation).
Dalam perhitungan rangkaian listrik, biasanya diasumsikan bahwa nilai tahanan, kapasitansi, dan induktansi tidak tergantung pada arus yang mengalir melaluinya. Asumsi ini menyederhanakan analisanya, tetapi dalam hal-hal tertentu dapat sangat membatasi ketelitian hasilnya.
Pada waktu menafsirkan hasil ahir suatu analisa, kita perlu mengingat asumsi, idealisasi dan pengira-iraan yang telah kita buat selama mengadakan analisa tersebut. Kadang-kadang kita perlu mengadakan pengira-iraan keteknikan dalam penyelesaian suatu soal, karena tidak memadainya keterangan tentang sifat-sifat fisik. Sebagai contoh, dalam merancang bagian-bagian mesin untuk pengoperasian pada suhu tinggi mungkin kita perlu memakai batas proporsional (propoyional limit) atau kuat-lelah (fatigue strength) bahannya dari data suhu rendah. Guna menjamin pengoperasian yang memuaskan dari bagian mesin ini, perancang harus menerapkan faktor keamanan (safety factor) pada hasil yang diperoleh dari  analisanya. Pengira-iraan semacam itu perlu pula dalam soal-soal perpindahan panas.
 Sifat-sifat fisik seperti konduktivitas termal atau viskositas berubah dengan suhu, tetapi jika dipilih suatu harga rata-rata yang tepat , maka penyelesaian soal dapat sangat disederhanakan tanpa memasukan  kesalahan yang cukup besar dalam hasil ahirnya.
Bila panas berpindah dari suatu fluida ke dinding , seperti misalnya didalam ketel, maka kerak terbentuk pada pengoperasian yang terus menerus dan akan mengurangi laju aliran panas. Untuk menjamin pengoprasian yang memuaskan dalam jangka waktu yang lama, maka harus ditrapkan faktor keamanan untuk mengatasi kemungkinan ini. Dalam perpindahan panas ada tiga jenis perpindahan panas yaitu perpindahan panas dengan cara konduksi, konveksi, dan radiasi.

2.      TUJUAN
Menentukan jenis-jenis perpindahan panas dan aplikasi perpindahan panas dibidang teknik kimia.

3.      MANFAAT
Mahasiswa dapat mengetahui jenis-jenis perpindaham panas dan pengaplikasian perpindahan panas dibidang teknik kimia.

BAB 2
TINJAUAN PUSTAKA
  1. PENGERTIAN PERPINDAHAN PANAS
Perpindahan panas dapat didefinisikan sebagai berpindahnya energi dari suatu daerah ke daerah lainnya sebagai akibat dari beda suhu antara daerah-daerah tersebut. Karena beda suhu terdapat di seluruh alam semesta, maka aliran panas bersifat seuniversal yang berkaitan dengan tarikan gravitasi. Tetapi tidak sebagaimana halnya gravitasi, aliran panas tidak di kendalikan oleh sebuah hubungan yang unik, namun oleh kombinasi dari berbagai hukum fisika yang tidak saling bergantungan.
Kepustakaan perpindahan panas pada umumnya mengenal tiga cara perpindahan panas yaitu, konduksi (conduction, juga dikenal dengan istilah hantaran), konveksi (convection, juga dikenal dengan istilah aliran), radiasi (radiartion).
  1. JENIS-JENIS PERPINDAHAN PANAS
1)      PERPINDAHAN PANAS DENGAN CARA KONDUKSI
Yang dimaksud dengan konduksi ialah pengangkutan kalor melalui satu jenis zat. Sehingga perpindahan kalor secara hantaran/konduksi merupakan satu proses pendalaman karena proses perpindahan kalor ini hanya terjadi di dalam bahan. Arah aliran energi kalor, adalah dari titik bersuhu tinggi ke titik bersuhu rendah. Perpindahan panas konduksi dan difusi energi akibat aktivitas molekul Sudah diketahui bahwa tidak semua bahan dapat menghantar kalor sama sempurnanya. Dengan demikian, umpamanya seorang tukang hembus kaca dapat memegang suatu barang kaca, yang beberapa cm lebih jauh dari tempat pegangan itu adalah demikian panasnya, sehingga bentuknya dapat berubah. Akan tetapi seorang pandai tempa harus memegang benda yang akan ditempa dengan sebuah tang. Bahan yang dapat menghantar kalor dengan baik dinamakan konduktor. Penghantar yang buruk disebut isolator. Sifat bahan yang digunakan untuk menyatakan bahwa bahan tersebut merupakan suatu isolator atau konduktor ialah koefisien konduksi terma. Apabila nilai koefisien ini tinggi, maka bahan mempunyai kemampuan mengalirkan kalor dengan cepat. Untuk bahan isolator, koefisien ini bernilai kecil.


Persamaan umum yang biasa digunakan dalam perpindahan panas dengan cara konduksi adalah



Rounded Rectangle:
 




                        Keterangan:
                                    H         : Panas
                                    k          : Konduktivitas termal
                                    T        : Perbedaan suhu
                                    x        : Perbedaan panjang/ jarak
                                    A         : Luas permukaan

H adalah perpindahan panas dan  merupakan gradien suhu kearah perpindahan panas. Konstanta positif k disebut konduktivitas atau kehantaran termal (thermal konductivity) benda itu, A adalah luas permukaan, sedangkan tanda minus diselipkan agar memenuhi hukum kedua termodinamika, yaitu bahwa panas mengalir dari suhu tinggi ke suhu yang lebih rendah.

NILAI KONDUKTIVITAS TERMAL (k) BERBAGAI BAHAN PADA SUHU 0° C
Bahan
W/m x °C
Btu/h x ft x °F
Logam


         Perak (murni)
410
237
         Tembaga (murni)
385
223
         Aluminium (murni)
202
117
         Nikel (murni)
93
54
         Besi (murni)
73
42
         Baja karbon, 1% C
43
25
         Timbal (murni)
35
20,3
         Baja krom-nikel
16,3
9,4
              (18% Cr, 8% Ni)


Bukan Logam


         Kuarsa (sejajar sumbu)
41,6
24
         Magnesit
4,15
2,4
         Marmar
2,08-2,94
1,2-1,7
         Batu pasir
1,83
1,06
         Kaca, jendela
0,78
0,45
         Kayu mapel atau ek
0,17
0,096
         Serbuk gergaji
0,059
0,034
         Wol kaca
0,038
0,022
Zat cair


        Air-raksa
8,21
4,74
        Air
0,556
0,327
        Amonia
0,540
0,312
        Minyak Lumas, SAE 50
0,147
0,085
        Freon 12,CCl2 F2
0,073
0,042

Gas


       Hidrogen
0,175
0,101
       Helium
0,141
0,081
       Udara
0,024
0,0139
       Uap air (jenuh)
0,0206
0,0119
       Karbon dioksida
0,0146
0,00844















Perpindahan panas konduksi dan difusi energi akibat aktivitas molekul
Pada umumnya, bahan yang dapat menghantar arus listrik dengan sempurna (logam) merupakan penghantar yang baik juga untuk kalor dan sebaliknya. Selanjutnya bila diandaikan sebatang besi atau sembarang jenis logam dan salah satu ujungnya diulurkan ke dalam nyala api. Dapat diperhatikan bagaimana kalor dipindahkan dari ujung yang panas ke ujung yang dingin. Apabila ujung batang logam tadi menerima energi kalor dari api, energi ini akan memindahkan sebahagian energi kepada molekul dan elektron yang membangun bahan tersebut. Moleku1 dan elektron merupakan alat pengangkut kalor di dalam bahan menurut proses perpindahan kalor konduksi. Dengan demikian dalam proses pengangkutan kalor di dalam bahan, aliran elektron akan memainkan peranan penting .
Persoalan yang patut diajukan pada pengamatan ini ialah mengapa kadar alir energi kalor adalah berbeda. Hal ini disebabkan karena susunan molekul dan juga atom di dalam setiap bahan adalah berbeda.
Untuk satu bahan berfasa padat molekulnya tersusun rapat, berbeda dengan satu bahan berfasa gas seperti udara. Molekul udara adalalah renggang seka1i. Tetapi dibandingkan dengan bahan padat seperti kayu, dan besi , maka molekul besi adalah lebih rapat susunannya daripada molekul kayu. Bahan kayu terdiri dari gabungan bahan kimia seperti karbon, uap air, dan udara yang terperangkat. Besi adalah besi. Kalaupun ada bahan asing, bahan kimia unsur besi adalah lebih banyak.

2)      PERPINDAHAN PANAS DENGAN CARA KONVEKSI
Yang dimaksud dengan konveksi ialah pengangkutan ka1or oleh gerak dari zat yang dipanaskan. Proses perpindahan ka1or secara aliran/konveksi merupakan satu fenomena permukaan. Proses konveksi hanya terjadi di permukaan bahan. Jadi dalam proses ini struktur bagian dalam bahan kurang penting. Keadaan permukaan dan keadaan sekelilingnya serta kedudukan permukaan itu adalah yang utama. Lazimnya, keadaan keseirnbangan termodinamik di dalam bahan akibat proses konduksi, suhu permukaan bahan akan berbeda dari suhu sekelilingnya. Dalam hal ini dikatakan suhu permukaan adalah T1 dan suhu udara sekeliling adalah T2 dengan Tl>T2. Kini terdapat keadaan suhu tidak seimbang diantara bahan dengan sekelilingnya.
Perpindahan kalor dengan jalan aliran dalam industri kimia merupakan cara pengangkutan kalor yang paling banyak dipakai. Oleh karena konveksi hanya dapat terjadi melalui zat yang mengalir, maka bentuk pengangkutan ka1or ini hanya terdapat pada zat cair dan gas. Pada pemanasan zat ini terjadi aliran, karena masa yang akan dipanaskan tidak sekaligus di bawa kesuhu yang sama tinggi. Oleh karena itu bagian yang paling banyak atau yang pertama dipanaskan memperoleh masa jenis yang lebih kecil daripada bagian masa yang lebih dingin. Sebagai akibatnya terjad sirkulasi, sehingga kalor akhimya tersebar pada seluruh zat.
            Aliran                          Arus bebas
                                                                    u            T
                                              u                           q
                                                               Tw

                                                          Dinding

            Laju perpindahan kalor dihubungkan dengan beda suhu menyeluruh antara dinding dan fluida, dan kuas permukaan A. Besar h disebut koefisien perpindahan-kalor konveksi (convection heat-transfer coefficient). Rumus dasar yang digunakan adalah


Rounded Rectangle: H= h A (Tw-T )
   = h A  T
 
Keterangan:
H         : Perpindahan panas
h          : Koefisien konveksi
A         : Luas permukaan                                            T       : Perpindahan suhu

Pada perpindahan kalor secara konveksi, energi kalor ini akan dipindahkan ke sekelilingnya dengan perantaraan aliran fluida. Oleh karena pengaliran fluida melibatkan pengangkutan masa, maka selama pengaliran fluida bersentuhan dengan permukaan bahan yang panas, suhu fluida akan naik. Gerakan fluida melibatkan kecepatan yang seterusnya akan menghasilkan aliran momentum. Jadi masa fluida yang mempunyai energi terma yang lebih tinggi akan mempunyai momentum yang juga tinggi. Peningkatan momentum ini bukan disebabkan masanya akan bertambah. Malahan masa fluida menjadi berkurang karena kini fluida menerima energi kalor. Fluida yang panas karena menerima kalor dari permukaan bahan akan naik ke atas. Kekosongan tempat masa bendalir yang telah naik itu diisi pula oleh masa fluida yang bersuhu rendah. Setelah masa ini juga menerima energi kalor dari permukan bahan yang kalor dasi, masa ini juga akan naik ke atas permukaan meninggalkan tempat asalnya. Kekosongan ini diisi pula oleh masa fluida bersuhu renah yang lain.


                                         


Perpindahan panas konveksi
(a) konveksi paksa, (b) konveksi alamiah,
(c) pendidihan, (d) kondensasi

Proses ini akan berlangsung berulang-ulang. Dalam kedua proses konduksi dan konveksi, faktor yang paling penting yang menjadi penyebab dan pendorong proses tersebut adalah perbedaan suhu. Apabila perbedaan suhu .terjadi maka keadaan tidak stabil terma akan terjadi. Keadaan tidak stabil ini perlu diselesaikan melalui proses perpindahan kalor. Dalam pengamatan proses perpindahan kalor konveksi, masalah yang utama terletak pada cara mencari metode penentuan nilai h dengan tepat. Nilai koefisien ini tergantung kepada banyak faktor. Jumlah kalor yang dipindahkan, bergantung pada nilai h.
Jika cepatan medan tetap, artinya tidak ada pengaruh luar yang mendoromg fluida bergerak, maka proses perpindahan ka1or berlaku.
Sedangkan bila kecepatan medan dipengaruhi oleh unsur luar seperti kipas atau peniup, maka proses konveksi yang akan terjadi merupakan proses perpindahan kalor konveksi paksa. Yang membedakan kedua proses ini adalah dari nilai koefisien h-nya.

3)      PERPINDAHAN PANAS DENGAN CARA RADIASI
                        Yang dimaksud dengan pancaran (radiasi) ialah perpindahan kalor melalui gelombang dari suatu zat ke zat yang lain. Semua benda memancarkan kalor. Keadaan ini baru terbukti setelah suhu meningkat. Pada hakekatnya proses perpindahan kalor radiasi terjadi dengan perantaraan foton dan juga gelombang elektromagnet. Terdapat dua teori yang berbeda untuk menerangkan bagaimana proses radiasi itu terjadi. Semua bahan pada suhu mutlak tertentu akan menyinari
sejumlah energi kalor tertentu. Semakin tinggi suhu bahan tadi maka semakin tinggi pula energi kalor yang disinarkan. Proses radiasi adalah fenomena permukaan. Proses radiasi tidak terjadi pada bagian dalam suatu bahan. Tetapi suatu bahan apabila menerima sinar, maka banyak hal yang boleh terjadi. Apabila sejumlah energi kalor menimpa suatu permukaan, sebagian akan dipantulkan, sebagian akan diserap ke dalam bahan, dan sebagian akan menembusi bahan dan terus ke luar. Jadi dalam mempelajari perpindahan kalor radiasi akan dilibatkan suatu fisik permukaan.

                        Rumus untuk perpindahan panas secara radiasi menerapkan hukum Stefan yaitu:



Rounded Rectangle: R= e
 



Keterangan:
e           : Emisivitas
          : Konstanta Stefan-Boltzeman (5,67 x 10-8 W/m2K4)
T          : Suhu

Persamaan diatas disebut hukum stefan-boltzman tentang radiasi termal dan berlaku hanya untuk radiasi benda hitam saja. Benda hitam adalah benda yang memancarkan energi menurut hukum .

Bahan yang dianggap mempunyai ciri yang sempurna adalah jasad hitam. Disamping itu, sama seperti cahaya lampu, adakalanya tidak semua sinar mengenai permukaan yang dituju. Jadi dalam masalah ini kita mengenal satu faktor pandangan yang lazimnya dinamakan faktor bentuk. Maka jumlah kalor yang diterima dari satu sumber akan berbanding langsung sebahagiannya terhadap faktor bentuk ini. Dalam pada itu, sifat terma permukaan bahan juga penting. Berbeda dengan proses konveksi, medan aliran fluida disekeliling permukaan tidak penting, yang penting ialah sifat terma saja. Dengan demikian, untuk memahami proses radiasi dari satu permukaan kita perlu memahami juga keadaan fisik permukaan bahan yang terlibat dengan proses radiasi yang berlaku.


Perpindahan panas radiasi
(a) pada permukaan, (b) antara permukaan dan lingkungan
Proses perpindahan kalor sering terjadi secara serentak. Misalnya sekeping plat yang dicat hitam. Lalu dikenakan dengan sinar matahari. Plat akan menyerap sebahagian energi matahari. Suhu plat akan naik ke satu tahap tertentu. Oleh karena suhu permukaan atas naik maka kalor akan berkonduksi dari permukaan atas ke permukaan bawah. Dalam pada itu, permukaan bagian atas kini mempunyai suhu yang lebih tinggi dari suhu udara sekeliling, maka jumlah kalor akan disebarkan secara konveksi. Tetapi energi kalor juga disebarkan secara radiasi. Dalam hal ini dua
hal terjadi, ada kalor yang dipantulkan dan ada kalor yang dipindahkan ke sekeliling.
Berdasarkan kepada keadaan terma permukaan, bahan yang di pindahkan dan dipantulkan ini dapat berbeda. Proses radiasi tidak melibatkan perbedaan suhu. Keterlibatan suhu hanya terjadi jika terdapat dua permukaan yang mempunyai suhu yang berbeda. Dalam hal ini, setiap permukaan akan menyinarkan energi kalor secara radiasi jika permukaan itu bersuhu T dalam unit suhu mutlak. Lazimnya jika terdapat satu permukaan lain yang saling berhadapan, dan jika permukaan pertama mempunyai suhu T1 mutlak sedangkan permukaan kedua mempunyai suhu T2 mutlak, maka permukaan tadi akan saling memindahkan kalor .
Selanjutnya juga penting untuk diketahui bahwa :
1. Kalor radiasi merambat lurus.
2. Untuk perambatan itu tidak diperlukan medium (misalnya zat cair atau gas).
BAB 3
APLIKASI DI BIDANG TEKNIK KIMIA
1.      APLIKASI PERPINDAHAN PANAS PADA THERMOS
            Pada saat mendidihkan air panas, berarti kita mendapatkan air panas. Bagaimana caranya agar air ini tetap panas? Tentunya kita masukkan ke dalam thermos. Thermos merupakan salah satu alat untuk menyekat kalor. Bagaimanakah cara kerja thermos hingga dapat menyekat kalor agar air tetap panas? Pada thermos terdapat dinding kaca di mana bagian dalam dan bagian luarnya dibuat mengkilap. Bagian dalam kaca dibuat mengkilap agar kalor dari air panas tidak terserap pada dinding. Sementara bagian luar dinding kaca dibuat mengkilap berlapis perak agar tidak terjadi perpindahan kalor secara radiasi. Ruang hampa di antara bagian dalam dan luar berfungsi untuk mencegah perpindahan kalor secara konveksi. Tutup thermos terbuat dari bahan isolator, seperti gabus, untuk mencegah terjadinya perpindahan kalor secara konduksi. Dengan demikian air di dalam thermos tetap panas.
2.      APLIKASI PERPINDAHAN PANAS KONVEKSI DALAM MEDAN ALIRAN PAKSA MENGGUNAKAN ALGORITMA SIMPLE
            Aplikasi ini merupakan aplikasi pada geometri dua plat datar. Perpindahan kalor konveksi dalam medan aliran merupakan gejala yang dipengaruhi oleh distribusi kecepatan aliran dan sifat-sifat fluida setempat. Distribusi kecepatan dalam medan aliran ini harus memenuhi dua persamaan secara serentak. persamaan momentum dan persamaan kontinuitas. Bila harga tekanan yang tepat disubstitusi ke dalam persamaan momentum, maka medan kecepatan yang dihasilkan akan memenuhi persamaan kontinuitas.
            Algoritrna SIMPLE (Semi-Implicit Method fur Pressure-Linked Equalioiis, Patankar, 1972) merupakan salah satu metoda untuk mendapatkan medan tekanan yang "tepat" yang diawali dengan menebak medan tekanan dan kecepatan pada awal iterasi. Substitusi harga tebakan ini ke dalam persamaan momentum memberikan medan kecepatan yang selanjutnya dikoreksi agar memenuhi persamaan kontinuitas. Medan tekanan juga dikoreksi dengan suatu faktor relaksasi yang harus ditentukan untuk mendapatkan konvergensi solusi. Pada tugas akhir ini, algoritma SIMPLE, diterapkan ke dalam sistem aliran udara di antara dua plat datar yang dipanaskan. Simulasi dilakukan pada berbagai kondisi kecepatan aliran serta temperatur dan jarak antar plat. Persyaratan konvergensi yang dipilih untuk menghentikan iterasi adalah bahwa selisih harga antara kecepatan dari persamaan momentum dan kecepatan dari persamaan kontinuitas tidak melebihi 1% (relatif terhadap kecepatan setempat) untuk seluruh titik grid dalam medan aliran. Dari simulasi ini dapat diperoleh distribusi temperatur dan kecepatan pada seluruh titik dalam medan aliran udara di antara dua plat datar (sepanjang domain simulasi). Distribusi temperatur yang telah diperoleh selanjutnya dapat digunakan untuk menghitung distribusi bilangan Nusselt sepanjang arah aliran udara. Sebagai hasilnya, diperoleh distribusi bilangan Nusselt yang berubah secara asimtotik menuju harga yang bervariasi di sekitar 7,534 - 7,542. Hasil ini cukup dekat dengan data yang terdapat di dalam referensi (Ozisik, Iieul Iiwi /erj) di mana bilangan Nusselt berubah secara asimtotik menuju harga 7,541.
3.      APLIKASI DALAM CFD
Aplikasi CFD Dalam Kehidupan Computational Fluid Dynamics atau CFD adalah analisis sistem yang melibatkan aliran fluida, perpindahan panas dan fenomena-fenomena terkait seperti reaksi kimia dengan cara simulasi berbasis komputer.
            APLIKASI CFD
Ø  Dalam perancangan instalasi perpipaan
Aplikasi dari piranti lunak berbasis metoda nemrik adalah dalam perancangan instalasi perpipaan. Dengan bantuan piranti lunak ini proses perancangan menjadi lebih mudah karena analisis terhadap rancangan langsung dapat diketahui hanya dengan menggambarkan instalasi rancangan. Umumnya piranti lunak yang tersedia di pasaran menyediakan fasilitas untuk berbagai boundary conditions seperti single atau double acting displacement, single atau double acting rotational, translational dengan bi-linear stiffness, snubbers, guide dan limit stop, tie-rod assembly, gap dan friksi, dan lain-lain.
Ø  Aplikasi pada Industri
Di bidang Aerospace : memperkirakan aliran fluida pada pesawat dan juga menentukan material yang akan dipakai oleh pesawat, simulasi bagian mana dari pesawat yang akan menerima kalor dan tekanan paling tinggi akibat gesekan dengan atmosfir saat meninggalkan atau menuju bumi, merancang dan mendisain bentuk pesawat, drag force dan lift force, etc.
 Di bidang proses industry : design dan analisa pipa pada industry oil & gas, analisa blade pompa, proses terjadinya kavitasi pada pompa maupun pipa, Heat Exchanger., water mixer, milk heater, etc
Ø  Aplikasi di bidang otomotif
Di bidang Otomotif : penentuan sifat aerodinamik pada bagian kendaraan, pergerakan kendaraan pada terowongan, system wiper, Fuel rail, Muffler, catalytic converter, natural convection with radiation ( head lamp), alternator, etc.
Powerplant : simulasi keadaan yang terjadi selama proses generasi -Di bidang  listrik berlangsung, yang umumnya terjadi pada boiler(PLTU), sehingga dapat mengetahui erosi partikel, korosi, perpindahan panas terutama didalam tube (pipa), particle drying (pengeringan partikel), ignition (pengapian), dan burnout dynamics (pergerakan api pembakaran). mengetahui karakteristik api, karakteristik turbin, keadaan didalam boiler, pipa, efisiensi optimal cooling tower, optimasi waste (PLTG)
Di bidang Elektronika : analisa aliran thermal di dalam assembli computer, pada tata letak server database.
Di bidang HVAC (Heat Ventilating Air Conditioner) : perpindahan kalor dan distribusi kontaminan dalam dimensi ruang (tiga dimensi), distribusi aliran udara dan tempratur, parameter kenyaman tata letak ruangan, Air Cond. Duct system pada Mass transport, building, etc
Di bidang kesehatan : simulasi aliran darah dalam pembuluh darah arteri dan vena , menjelaskan efek pernapasan dari partikael-partikel berukuran berbeda dalam tubuh manusia , kontaminasi udara, air, atau fluida lainnya.
DAFTAR PUSTAKA
Kreith,Frank dan Arko prijono.prinsip-prinsip perpindahan panas.Edisi ketiga. Erlangga:Jakarta.1997.
Holman, J.P., dan jasjfi.Perpindahan Kalor.Edisi keenam.Erlangga:Jakarta.1997
Incropera, F.P., dan Dewitt, D.P., Fundamental of Heat and Mass Transfer, John Wiley & Sons, 2002.
Kern, D.Q., Process Heat Transfer, Mc Graw Hill, New York, 1950.
McCabe, Smith dan Harriots, Unit Operations in Chemical Engineering, Mc Graw Hill,1985.
Holman, J.P., Heat Transfer, Mc Graw Hill, New York, 1987.
http://ITB Central Library.com
http://E-Learning USU-inherent/perpindahan panas.html

No comments:

Post a Comment